TABLE 1 Genetic Epidemiology and Core Public Health Functions in the Continuum from Genes to Public Health | Step | Description of activities | Disease/gene
examples | |--|---|--| | GENETIC TECHNOLOGY HUMAN GENOME PROJEC | Gene mapping and linkage
T studies in high risk
families | 50,000-100,000
genes such as
BRCA1 in
breast cancer | | V ASSESSMENT | GENETIC EPIDEMIOLOGY | ApoE E4 allele
and Alzheimer's
disease | | V POLICY DEVELOPMENT | When and how genetic tests are to be applied in public health programs | Screening
for various
genes | | V
ASSURANCE | Development of public health
genetic programs, evaluation
of prevention effectiveness,
quality assurance | | TABLE 2 Genetic Epidemiology and Assessment of the Role of Genetic Factors in Disease | Ası | pects | Examples | | | |-----------|---|--|--|--| | <u>I.</u> | Population studies | | | | | Α. | Prevalence of susceptibility alleles in various populations | Studies of the frequency
of BRCA1 mutations in
different ethnic groups | | | | В. | Determinants of mutations in various populations | Studies of risk factors
for chromosomal anomalies
such as Down syndrome | | | | C. | Association between genetic traits and diseases | Studies of ApoE-E4 allele in Alzheimer's disease in the population | | | | <u>II</u> | . Family studies | | | | | Α. | Familial aggregation of diseases | Recurrence risks of birth defects after an an affected pregnancy | | | | В. | Causes of familial aggregation of disease | Studies of genetic and environmental factors in the recurrence of various diseases | | | | C. | Establishing genetic modes of inheritance | Segregation and linkage analysis in families | | | TABLE 3 Gene-Environment Interaction Analysis in a Case-Control Study | Exposure | Suscep-
tibility
genotype | Cases | Controls | Odds
Ratio | |-----------|---------------------------------|-----------------|-----------------|---------------------------------------| | (1=presen | t, 0=absent) | | | | | 0 | 0 | A ₀₀ | B ₀₀ | $OR_{00} = 1.0$ | | 0 | 1 | A ₀₁ | B ₀₁ | $OR_{01} = A_{01}B_{00}/A_{00}B_{01}$ | | 1 | 0 | A_{10} | B ₁₀ | $OR_{10} = A_{10}B_{00}/A_{00}B_{10}$ | | 1 | 1 | A_{11} | B ₁₁ | $OR_{11} = A_{11}B_{00}/A_{00}B_{11}$ | Case-only odds ratio $OR_{ca}=A_{11}A_{00}/A_{10}A_{01}=(OR_{11}/OR_{10}OR_{01})OR_{co}$ Where $OR_{co}=B_{11}B_{00}/B_{10}B_{01}$ (control-only odds ratio) TABLE 4 Case-Control Analysis of the Interaction Between Maternal Cigarette Smoking, Transforming Growth Factor Alpha Polymorphism, and the risk for cleft palate. Adapted from Hwang et al. (11) | Smoking
P | TaqI
olymorphism | Cases | Controls | Odds
Ratio | 95% C.I. | |--------------|---------------------|-------|----------|---------------|----------| | _ | _ | 36 | 167 | 1.0 | Referent | | - | + | 7 | 34 | 1.0 | 0.3-2.4 | | + | - | 13 | 69 | 0.9 | 0.4-1.8 | | + | + | 13 | 11 | 5.5 | 2.1-14.6 | | | | | | | | Crude odds ratios are presented. Odds ratio based on a case-only study is 5.1 (95% C.I. 1.5-18.5) (13 * 36)/(13 * 7) TABLE 5 Characteristics of Nontraditional Case-Only Studies | Feature (| Case-Only | Case-Parental
Control | Affected
Relative-pair | |-------------------------|---|--|---| | Study
Subjects | Cases | Cases and their
parents | Second case
in family,
proband,
and parents | | 'Controls' | None | Expected genotype distribution based on parental genotypes | Expected distribution of alleles with Mendelian transmission | | Assessment | Departure from multiplicative relation between exposure and genotype | Association between genotype and disease Also departure from multipli- | Linkage between locus and disease Also departure from multipli- | | | | cative relation | cative relation | | Assumptions | s Independence
between genotype
and exposure | Mendelian
tranmission | Mendelian
transmission | | Strengths & limitations | Simple. Cannot assess effects of exposure or genotype. Linkage disequilibrium | Requires one or both parents. Cannot assess exposure effects. Linkage disequilibrium | Need families with 2 or more cases. Cannot assess exposure Cannot assess specific | TABLE 6 Gene-Environment Interaction Analysis in the Context of a CaseParental Control Study: Analysis of Nontransmitted Alleles _____ Susceptibility genotype Exposure: Absent Cases | | | Present | Absent | |----------------------------------|--------|---------|--------------------------------| | Parental non-transmitted all | - | T_0 | U_0 | | | Absent | V_0 | W_0 | | Odds
Ratio (amo
unexposed) | | 1 | U ₀ /V ₀ | Exposure: Present Cases | | | | Present | Absent | | |------------|---------|--|----------------|----------------|--| | Parental | Present | | \mathtt{T}_1 | \mathtt{U}_1 | | | non-trans- | | | | | | mitted alleles | | Absent | V_1 | W_1 | |------------|--------|-------|-----------| | | | | | | | | | | | Odds | | 1 | U_1/V_1 | | Ratio (amo | ong | | | | exposed) | | | | TABLE 7 Gene-Environment Interaction Analysis in the Context of an Affected Sib-Pair Study | Alleles
with | Unexposed
case | Exposed case | Expected | Odds
Ratio
(unexposed) | Odds
Ratio
(exposed) | |-----------------|-------------------|-----------------|----------|------------------------------|----------------------------| | 0 | A ₀₀ | A ₀₁ | 0.25 | 1.0 | 1.0 | | 1 | A ₁₀ | A ₁₁ | 0.50 | $A_{10}/2A_{00}$ | $A_{11}/2A_{01}$ | | 2 | A_{20} | A_{21} | 0.25 | A_{20}/A_{00} | A_{21}/A_{01} | | | | | | | | TABLE 8 Incorporating a Familial Analysis of Reconstructed Cohorts into a Case-Control Study | Disease
in a Relative | Disease
in Index Persons | | | |--------------------------|-----------------------------|---------|--| | | Case | Control | | | Yes | A_1 | A_0 | | | No | B_1 | B_0 | | | Total | N_1 | N_0 | | | | | | | Total of case relatives is N_1 and control relatives $N_0.$ Disease proportion in case relatives A_1/N_1 Disease proportion in control relatives A_0/N_0 Risk ratio $(A_1/N_1)/(A_0/N_0)$ TABLE 9 Linkage analysis in an Epidemiologic Study Design | Alleles
ibd w
probands | Cohort study | | Case-control study | | | |------------------------------|-----------------|---------------|--------------------|----------|--------------------------| | probanas | Disease
Risk | Risk
ratio | Recurrent
cases | Controls | Odds
ratio | | | | | | | | | 0 | R_0 | 1.0 | A_0 | B_0 | 1.0 | | 1 | R_1 | RR_1 | A_1 | B_1 | $\mathrm{A_1B_0/A_0B_1}$ | | 2 | R_2 | RR_2 | A_2 | B_2 | A_2B_0/A_0B_2 | | | | | | | |